ABC to DQ0 Transformation (voltage source)
Description
Performs the Park transformation (ABC to DQ0) in the power domain (using Voltage sources).
The transformation from phase quantities to the rotating reference frame calculated as
\begin{bmatrix} d\\ q\\ 0 \end{bmatrix} = \frac{2}{3}\cdot \begin{bmatrix} \cos (\Theta ) & cos (\Theta - \frac{2\pi}{3})& cos (\Theta + \frac{2\pi}{3}) \\ -\sin (\Theta ) & -\sin (\Theta - \frac{2\pi}{3})& -\sin (\Theta + \frac{2\pi}{3}) \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix} \cdot \begin{bmatrix} a\\ b\\ c \end{bmatrix}
Library
Electrical > Transformers
Pins
Name | Description |
---|---|
A | Voltage Va |
B | Voltage Vb |
C | Voltage Vc |
Theta | Angle [Radian] as a voltage |
D | Voltage Vd |
Q | Voltage Vq |
Zero | Voltage V0 |