DQ0 to ABC Transformation
Description
The transformation from the rotating reference frame to phase quantities calculated as
\begin{bmatrix} a\\ b\\ c \end{bmatrix} = \begin{bmatrix} \cos (\Theta ) & -\sin (\Theta ) & 1 \\ \cos (\Theta - \frac{2\pi}{3})& -\sin (\Theta - \frac{2\pi}{3}) & 1 \\ \\ \cos (\Theta + \frac{2\pi}{3}) & -\sin (\Theta + \frac{2\pi}{3}) & 1\end{bmatrix} \cdot \begin{bmatrix} d\\ q\\ 0 \end{bmatrix}
Library
Control > Transforms
Pins
Name | Description |
---|---|
D | D input signal |
Q | Q input signal |
Zero | 0 input signal |
A | A output signal |
B | B output signal |
C | C output signal |
Angle | Angle input signal [Rad] |
Parameters
Name | Description |
---|---|
SamplingTime | -none or 0: No sampling. The system will be solved in the Newton loop (default). -auto: Inherit the sampling time of its source device. -Sampling Period: defined in seconds. |