DQ0 to ABC Transformation

Description
The transformation from the rotating reference frame to phase quantities calculated as
\begin{bmatrix} a\\ b\\ c \end{bmatrix} = \begin{bmatrix} \cos (\Theta ) & -\sin (\Theta ) & 1 \\ \cos (\Theta - \frac{2\pi}{3})& -\sin (\Theta - \frac{2\pi}{3}) & 1 \\ \\ \cos (\Theta + \frac{2\pi}{3}) & -\sin (\Theta + \frac{2\pi}{3}) & 1\end{bmatrix} \cdot \begin{bmatrix} d\\ q\\ 0 \end{bmatrix}
Library
Control > Transforms
Pins
| Name | Description |
|---|---|
| D | D input signal |
| Q | Q input signal |
| Zero | 0 input signal |
| A | A output signal |
| B | B output signal |
| C | C output signal |
| Angle | Angle input signal [Rad] |
Parameters
| Name | Description |
|---|---|
| SamplingTime | -none or 0: No sampling. The system will be solved in the Newton loop (default). -auto: Inherit the sampling time of its source device. -Sampling Period: defined in seconds. |