ABC to DQ0 Transformation
Description
The transformation from phase quantities to the rotating reference frame calculated as
\begin{bmatrix} d\\ q\\ 0 \end{bmatrix} = \frac{2}{3}\cdot \begin{bmatrix} \cos (\Theta ) & cos (\Theta - \frac{2\pi}{3})& cos (\Theta + \frac{2\pi}{3}) \\ -\sin (\Theta ) & -\sin (\Theta - \frac{2\pi}{3})& -\sin (\Theta + \frac{2\pi}{3}) \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix} \cdot \begin{bmatrix} a\\ b\\ c \end{bmatrix}
Library
Control > Transforms
Pins
Name | Description |
---|---|
A | A input signal |
B | B input signal |
C | C input signal |
Angle | Angle [Radian] |
D | D output signal |
Q | Q output signal |
Zero | 0 output signal |
Parameters
Name | Description |
---|---|
SamplingTime | -none or 0: No sampling. The system will be solved in the Newton loop (default). -auto: Inherit the sampling time of its source device. -Sampling Period: defined in seconds. |