ABC to DQ0 Transformation

Description
The transformation from phase quantities to the rotating reference frame calculated as
\begin{bmatrix} d\\ q\\ 0 \end{bmatrix} = \frac{2}{3}\cdot \begin{bmatrix} \cos (\Theta ) & cos (\Theta - \frac{2\pi}{3})& cos (\Theta + \frac{2\pi}{3}) \\ -\sin (\Theta ) & -\sin (\Theta - \frac{2\pi}{3})& -\sin (\Theta + \frac{2\pi}{3}) \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix} \cdot \begin{bmatrix} a\\ b\\ c \end{bmatrix}
Library
Control > Transforms
Pins
| Name | Description |
|---|---|
| A | A input signal |
| B | B input signal |
| C | C input signal |
| Angle | Angle [Radian] |
| D | D output signal |
| Q | Q output signal |
| Zero | 0 output signal |
Parameters
| Name | Description |
|---|---|
| SamplingTime | -none or 0: No sampling. The system will be solved in the Newton loop (default). -auto: Inherit the sampling time of its source device. -Sampling Period: defined in seconds. |