ABC to αβγ Transformation

Description
The projection of the phase quantities onto a stationary two-axis reference frame calculated as
\begin{bmatrix} x_\alpha\\ x_\beta\\ x_\gamma \end{bmatrix} = \frac{2}{3}\cdot \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0& \frac{\sqrt{3}}{2}& 1 \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix} \cdot \begin{bmatrix} x_a\\ x_b\\ x_c \end{bmatrix}
Library
Control > Transforms
Pins
| Name | Description |
|---|---|
| A | A input signal |
| B | B input signal |
| C | C input signal |
| Alpha | Alpha output signal |
| Beta | Beta output signal |
| Gamma | Gamma output signal |
Parameters
| Name | Description |
|---|---|
| SamplingTime | -none or 0: No sampling. The system will be solved in the Newton loop (default). -auto: Inherit the sampling time of its source device. -Sampling Period: defined in seconds. |