αβγ to DQ0 Transformation

Description
The transformation from the stationary reference frame to the rotating reference frame calculated as
\begin{bmatrix} x_d\\ x_q\\ x_0 \end{bmatrix} = \begin{bmatrix} cos(\Theta ) & sin(\Theta ) & 0 \\ -sin(\Theta )& cos(\Theta )& 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x_\alpha\\ x_\beta\\ x_\gamma \end{bmatrix}
Library
Control > Transforms
Pins
| Name | Description |
|---|---|
| Alpha | Alpha input signal |
| Beta | Beta input signal |
| Gamma | Gamma input signal |
| D | D output signal |
| Q | Q output signal |
| Zero | 0 output signal |
| Angle | Angle input signal [Rad] |
Parameters
| Name | Description |
|---|---|
| SamplingTime | -none or 0: No sampling. The system will be solved in the Newton loop (default). -auto: Inherit the sampling time of its source device. -Sampling Period: defined in seconds. |